[Skip to Content]

Exposure Issues

数字放射照相设备的宽曝光纬度可导致患者剂量的大范围, from extremely low to extremely high. “适当”的患者剂量需要提供“可接受”的图像质量,以自信地做出准确的鉴别诊断. If the detector is underexposed due to inadequate radiographic technique factors, 尽管图像可以被放大和重新缩放以呈现良好的灰度再现, the quantum mottle in the image is likewise amplified, resulting in a noisy and grainy image. This causes the low contrast resolution sensitivity to be compromised, and often necessitates a retake. 至少在这种情况下,根据图像的外观很容易识别曝光不足.

更有问题的情况是由于不适当的高射线照相技术因素导致探测器过度曝光, resulting in needless patient dose. Except for extreme overexposures, 所产生的图像通常具有优异的放射质量,具有高对比度分辨率灵敏度和低量子斑, 由于数字探测器系统的能力,以重新调整高信号的灰度范围优化观看软拷贝显示器或硬拷贝电影. Unfortunately, the patient in this situation has received needless radiation exposure, 通常情况下,没有任何参与收购或阅读案件的人知道. In some cases, a three to five times overexposure or more can happen, without any complaints from anyone. 一种被称为“剂量蠕变”的现象可能发生在曝光不足对图像外观产生明显负面影响的基础上, 当病人过度曝光,但有漂亮的电子图像时,没有感觉到负面影响. In the analog screen-film detector paradigm, the fixed speed of the detector requires that the exposure be correct, 否则,胶片光密度在处理图像中的响应不是太亮(曝光不足)就是太暗(曝光过度)。. 由于在数字图像采集中,与图像外观和灰度再现(亮度/对比度)没有直接的相关性, the immediate feedback is lost. Fortunately, 大多数数字探测器系统都有一个“曝光指示器”,根据对原始图像数据强度的分析和随后产生具有适当亮度和对比度设置的图像所必需的缩放,提供有关入射到探测器上的相对曝光的一些反馈. Unfortunately, 每个制造商都有一个独特的方式来指示这个曝光指示器的反馈信号. Until a formal exposure index standard is adopted by all manufacturers, it is imperative that technologists and 放射科医生熟悉了给定的数字探测器设备指示和报告获得图像的相对曝光强度的具体方式. 这可以识别暴露不足和过度的检查(和患者),并协助技术人员对放射照相技术进行调整,以达到辐射暴露的一致性,并在对患者安全的同时优化图像质量.

图1显示了各种屏膜探测器“速度”作为入射曝光函数的经典特征曲线响应的比较, and comparison to a generic digital radiography detector response. Clearly, 数字探测器的纬度跨越了“等效速度级”屏膜探测器的大范围. 值得注意的是,非常大的曝光范围(红色椭球)落在数字探测器的线性响应曲线上, 当数字反馈信号(暴露指数)没有被跟踪时,哪一点值得关注.

Figure 1. 不同照相速度的屏膜探测器和数字射线探测器的特性曲线响应.

数字放射照相设备的宽纬度响应结果如图2所示, 展示了一组不同曝光水平下的胸影图像(1倍的曝光水平相当于200速度的屏幕胶片检测器的响应). 光密度方面的屏膜图像响应受入射曝光水平变化的强烈影响. Digital radiography images are scaled uniformly, despite the incident exposure variation; however, as the contrast resolution phantom depicts in the lower row, 较大的统计变化在曝光不足的图像有较大的影响,以解决小, low contrast signals, whereas at very high exposures (compare 2.5X至5X图像)图像对比度分辨率/灵敏度反应不明显受益于增加剂量给病人. In fact, at even higher exposures, 由于包含了其他非随机噪声源,对比度分辨率会下降.g., detector imperfections) and saturation of the signals.

Figure 2. Digital radiography phantom images acquired with screen-film (top row), computed radiography (middle row), and an extracted and magnified insert from the digital images (bottom row). 每一列的入射曝光变化对应于典型的“200速度”屏膜探测器曝光的一半到五倍的范围.

A clinical example of underexposure is illustrated in Figure 3, demonstrating the lack of detail in the image and preponderance of a grainy, mottled appearance. 这种曝光不足可能是由于不适当的射线照相技术(ma过低)或自动曝光控制光计时器故障. A repeat exposure of the same patient is shown in Figure 4, 清楚地显示改善的图像质量和诊断信息没有显示在曝光不足的图像.

Figure 3. 腹部未曝光的计算机x线摄影图像(点击图片查看完整尺寸).

Same patient, proper exposure is shown in Figure 4.

Figure 4.Properly exposed computed radiography image of the abdomen. (click on image for full sized version).

In some cases, particularly in areas of the image with little or no attenuation, 患者和数字检测器的过度曝光会导致超出检测器线性工作范围的图像信息的饱和和丢失, 如图5所示,肺区和临近患者解剖的未准直区域.

Figure 5. Overexposure and saturation of areas of the digital image, 其中数字数据丢失且无法恢复(点击图片查看完整尺寸版本).
Top