[Skip to Content]

Fluoroscopy & Digital Photospot

Fluoroscopy provides a dynamic view of the anatomy, and to keep total patient dose low, 图像增强器以非常高的增益在低空气入射速率下工作,以达到电视摄像机在室内电视监视器上产生合理明亮图像所必需的亮度. 由于人眼-大脑反应的内部滞后特性,以每秒30帧的速度呈现给观看者的实时图像序列比静态的最后一帧保持图像要少得多, which is on the order of 200 ms. 其结果是,实时查看的噪声图像序列将显示为大约3-5帧图像信息内容的平均值, 从而呈现出比上一帧保持图像更少的量子斑驳. 数字光斑图像通过图像增强器/电视系统获得,使用更高的入口空气孔径(当然也更高的患者剂量),但就分辨率而言,图像质量要高得多(通常,更高分辨率的电视摄像机与相应更小的像素尺寸的更大的数字图像矩阵一起使用),并且实现了更低的量子斑, as shown below. 与单帧透视图像相比,数字光斑的曝光差异约为50 - 100倍. This must be considered, however, 与相对较少的数字光斑图像相比,在透视期间获得的图像数量要大得多,这些数字光斑图像是为了记录解剖结果而获得的,具有更好的细节和图像质量.

Pelvis Phantom

Figure A. One frame of a fluoroscopic image of a pelvis phantom Figure B.One digital photospot image of a pelvis phantom.

图A是骨盆幻象的单帧透视,其图像增强器直径为38 cm. The techniques used to acquire this fluoroscopy run were 75 kV and 2.4 mA, which are typical of fluoroscopy. The radiation air kerma rate at the entrance of the phantom (i.e., entrance skin air kerma rate) was 35 mGy/minute (i.e., ~4 R/minute). Fluoroscopy is performed by generating 30 frames every second, 所以在一分钟内总共会有60秒× 30帧/秒的图像, or 1800 images. 图A显示了每分钟产生的1800张图像中的一张,因此患者的入口剂量为~(35 mGy入口空气克玛)/(1800张获取的图像), or ~0.019mGy entrance air kerma per frame.

图B显示了通过将x射线管电流增加到高值而获得的数字光斑图像(x光片)的示例, 比透视时使用的低管高大约百倍.e.. 2.4 mA). In this example, the x-ray tube voltage decreased to 65 kV, 使用9 ma的x射线束强度获得数字光斑图像. The skin entrance air kerma associated with Figure B was ~1.4 mGy, or a factor of 74 (i.e., 1.4/0.019) higher than the single fluoroscopy frame depicted in Figure A.

用于生成射线照相图像的光子数量决定了图像中斑驳(又称噪声)的数量. 图A使用了很少的光子,并且比图B有更高的色斑. Fluoroscopy images are generally very low quality, 并用于确定导管的位置,而不是用于诊断解释. 数字光斑图像是通过使用约100倍以上光子的辐射强度获得的, and are considered to be diagnostic.

Head Phantom

Figure C. One frame of a fluoroscopic run of a skull phantom (AP projection) Figure D. 图C所示为同一颅骨幻像的数字光斑图像.

图C显示的是颅骨幻像的单帧透视, with a nominal image intensifier diameter of 25 cm. 使用(由II系统选择)获取该图像的技术是x射线管电压为74 kV,管电流为2.2 mA. 颅骨幻像的x线技术选择略低于用于骨盆幻像成像的x线技术(图A),因为颅骨幻像的投影对骨盆AP投影的衰减较小. 在幻膜入口处的辐射气量为26mgy /min (~2).9 R/分钟),因此图C所示的单帧需要入口皮肤风量为0.014 mGy.

图D显示了在完成透视时所拍摄的相应的数字光斑图像(x光片). To generate the radiograph shown in Figure D, 成像链使用的x射线管电压为68 kV,总管电流曝光时间积为6 mAs(大电流/短曝光时间). 生成图D中图像所需的入口皮肤风量为0.94 mGy, or a factor of 67 times higher (i.e., 0.94/0.014) than the single fluoroscopy frame depicted in Figure C. As expected, the image quality (i.e.图D中的图像(斑驳)是低的,图像是可以接受的诊断目的. By contrast, the mottle in the image in Figure C is very high, 在大多数临床应用中,图C所示的单一框架不被认为具有诊断质量.

对比透视单帧(图a和图C)和数字光斑(图B和图D), 重要的是要注意,除了用于获取图像的辐射量之外,成像链是相同的. 图像中的斑点(噪声)量与用于获取图像的光子数的平方根成反比. In other words, 与数字光斑图像相比,荧光系列使用的辐射少约100倍的单帧图像将有大约10倍的斑驳. This increased mottle will limit the ability to detect low contrast lesions; a fluoroscopy frame is expected to have about a tenfold reduction in lesion detection (contrast or lesion effective thickness) than the corresponding digital photospot image.
Top